H3

IND I A
An interomatad besming patatam
NEET UG ANSWER \& SOLUTION (07-05-23)

Section-A (Physics)

1. The magnitude and direction of the current in the following circuit is

(1) $\frac{5}{9}$ A from AB through E
(2) 1.5 A from B to A through E
(3) 0.2 A from B to A through E
(4) 0.5 A from A to B through E

Sol. (4)
$\mathrm{i}=\frac{10-5}{10}=\frac{5}{10} \mathrm{~A}=0.5 \mathrm{~A}($ from A to B through E)
2. The net magnetic flux through any closed surface is :
(1) Infinity
(2) Negative
(3) Zero
(4) Positive

Sol. (3)
Magnetic field exist in closed Loops (Monopoles do not exist)

$$
\phi=\overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=0 \text { (Gauss law for magnetism) }
$$

3. The amount of energy required to form a soap bubble of radius 2 cm from a soap solution is nearly : (surface tension of soap soluton $=0.03 \mathrm{~m}^{-1}$)
(1) $3.01 \times 10^{-4} \mathrm{~J}$
(2) $50.1 \times 10^{-4} \mathrm{~J}$
(3) $30.16 \times 10^{-4} \mathrm{~J}$
(4) $5.06 \times 10^{-4} \mathrm{~J}$

Sol. (1)
$\mathrm{E}=2 \mathrm{~T}\left(4 \pi \mathrm{R}^{2}\right)$
$=2(0.03)$
(4) (3.14) $\left(2 \times 10^{-2}\right)^{2}=3.01 \times 10^{-4} \mathrm{~J}$
4. A $12 \mathrm{~V}, 60 \mathrm{~W}$ lamp is connected to the secondary of a step down transformer, whose parimary is connected to ac mains of 220 V . Assuming the transformer to be ideal, what is the current in the primary winding?
(1) 3.7 A
(2) 0.37 A
(3) 0.27 A
(4) 2.7 A

Sol. (3)
$\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}=\mathrm{V}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}$ (Ideal transformer)
$\Rightarrow \mathrm{P}_{\text {out }}=\mathrm{P}_{\text {in }} \quad \Rightarrow 60=220 \times \mathrm{I}_{\mathrm{P}} \quad \mathrm{I}_{\mathrm{P}}=\frac{60}{220}=0.27 \mathrm{~A}$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
5. In a series LCR circuit, the inductance L is 10 mH , capacitance C is $1 \mu \mathrm{~F}$ and resistance R is 100Ω. The frequency at which resonance occurs is :
(1) $1.59 \mathrm{rad} / \mathrm{s}$
(2) 1.59 kHz
(3) $15.9 \mathrm{rad} / \mathrm{s}$
(4) 15.9 kHz

Sol. (2)
$\mathrm{L}=10 \times 10^{-3} \mathrm{H}$
$\mathrm{C}=1 \times 10^{-6} \mathrm{~F}$
$\mathrm{R}=100 \Omega$
At resonance $X_{L}=X_{c}$
$\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$
$\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$
$\mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}=\frac{1}{2 \pi \sqrt{10 \times 10^{-3} \times 10^{-6}}}=1.59 \mathrm{KHz}$
6. Given below are two statements:

Statement I : Photovoltaic devices can convert optical radiation into electricity,
Statement II : Zener diode is designed to operate under reverse bias in breakdown regioni.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is correct but Statement II is incorrect
(2) Statement I is incorrect but Statement II is correct
(3) Both Statement I and Statement II are correct
(4) Both Statement I and Statement II are incorrect

Sol. (3)
Statement I : Photocel1/solar cell convert light energy into electric energy/current.
Statement II : We use zener diode in reverse biased condition, when reverse biased voltage more than break down voltage than it act as stablizer.
7. The temperature of a gas is $-50^{\circ} \mathrm{C}$. To what temperature the gas should be heated so that the rms speed is increased by 3 times?
(1) 3097 K
(2) 223 K
(3) $669^{\circ} \mathrm{C}$
(4) $3295^{\circ} \mathrm{C}$

Sol. (4)
$\mathrm{v}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}}$

$$
\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\sqrt{\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}}
$$

Let initial speed is v
As speed is increased by 3 times so final speed become $4 v$
$\Rightarrow \frac{\mathrm{v}}{4 \mathrm{v}}=\sqrt{\frac{223}{\mathrm{~T}}}$
$\mathrm{T}=3568 \mathrm{~K}=3295^{\circ} \mathrm{C}$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
8. The venturi-metar work on :
(1) The principle of parallel axes
(2) The principle of parallel axes
(3) Huygen's principle
(4) Bernoulli's principle

Sol. (4)
Venturimeter works on Bernoulli's principle.
9. A vehicle travels half the distance with speed v and the remaining distance with speed 2 v . Its average speed is :
(1) $\frac{4 v}{3}$
(2) $\frac{3 v}{4}$
(3) $\frac{\mathrm{v}}{3}$
(4) $\frac{3 v}{4}$

Sol. (1)
$\mathrm{v}_{\text {avg }}=\frac{2 \mathrm{v}_{1} \mathrm{v}_{2}}{\mathrm{v}_{1}+\mathrm{v}_{2}}=\frac{4 \mathrm{v}}{3}$
10. An ac source is connected to a capacitor C . Due to decrease in its operating frequency :
(1) displacement current decreases
(2) capacitive reactance remains constant
(3) capacitive reactance decreases
(4) displacement current increases.

Sol. (1)
$\mathrm{i}_{\mathrm{C}}=\mathrm{i}_{\mathrm{D}}=\frac{\mathrm{V}_{0}}{\mathrm{X}_{\mathrm{C}}} \sin \omega \mathrm{t}$
$\mathrm{i}_{\mathrm{C}}=\mathrm{i}_{\mathrm{D}}=\left(\mathrm{V}_{0} \omega \mathrm{C}\right) \sin \omega \mathrm{t}$
On decreasing frequency $\omega \downarrow \quad X_{c} \uparrow \quad i_{d} \downarrow$
11. Light travels a distance x in time t_{1} in air and 10 x in time t_{2} in another denser medium. What is the critical angle for this medium?
(1) $\sin ^{-1}\left(\frac{t_{1}}{10 t_{2}}\right)$
(2) $\sin ^{-1}\left(\frac{10 t_{1}}{t_{2}}\right)$
(3) $\sin ^{-1}\left(\frac{t_{2}}{t_{1}}\right)$
(4) $\sin ^{-1}\left(\frac{10 t_{2}}{t_{1}}\right)$

Sol. (2)
Speed of light is air $V_{1}=\frac{x}{t_{1}}$
Speed of light is a medium $V_{2}=\frac{10 x}{t_{2}}$
$\sin \theta_{c}=\frac{V_{2}}{V_{1}}=\frac{10 x}{t_{2}} \times \frac{t_{1}}{x}$
$\theta_{\mathrm{c}}=\sin ^{-1}\left(\frac{10 \mathrm{t}_{\mathrm{t}}}{\mathrm{t}_{2}}\right)$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
12. The equivalent capacitance of the system shown in the following circuit is :

(1) $6 \mu \mathrm{~F}$
(2) $9 \mu \mathrm{~F}$
(3) $2 \mu \mathrm{~F}$
(4) $3 \mu \mathrm{~F}$

Sol. (3)
$\mathrm{C}_{\mathrm{AB}}=\frac{3 \times 6}{3+6}=2 \mu \mathrm{~F}$

13. The magnetic energy stored in an inductor of inductance $4 \mu \mathrm{H}$ carrying a current of 2 A is :
(1) 8 mJ
(2) $8 \mu \mathrm{~J}$
(3) $4 \mu \mathrm{~J}$
(4) 4 mJ

Sol. (2)
Energy $=\frac{1}{2} \mathrm{Li}^{2} \quad=\frac{1}{2} 4 \times 10^{-6} \times 2^{2} \quad=8 \times 10^{-6} \mathrm{~J}=8 \mu \mathrm{~J}$
14. A full wave rectifier circuit consists of two p-n j unction diodes, a centre-tapped transformer, capacitor and a load resistance. Which of these components remove the ac ripple from the rectified output? .
(1) Capacitor
(2) Load resistance
(3) A centre-tapped transformp
(4) p-njunction diodes

Sol. (1)
Capacitor used to remove AC ripples from Rectifier output.
15. In a plane electromagnetic wave travelling in free space, the electric field component oscillates sinusoidally at a frequency of $2.0 \times 10^{10} \mathrm{~Hz}$ and amplitude $48 \mathrm{~V} \mathrm{~m}^{-1}$. Then the amplitude of oscillating magnetic field is :
(Speed of light in free space $=3 \times 10^{8}$) $\mathrm{m} \mathrm{s}^{-1}$
(1) $1.6 \times 10^{-7} \mathrm{~T}$
(2) $1.6 \times 10^{-6} \mathrm{~T}$
(3) $1.6 \times 10^{-9} \mathrm{~T}$
(4) $1.6 \times 10^{-8} \mathrm{~T}$

Sol. (1)
$\mathrm{C}=\frac{\mathrm{E}_{0}}{\mathrm{~B}_{0}}$
$\mathrm{B}_{0}=\frac{\mathrm{E}_{0}}{\mathrm{C}}$
$=\frac{48}{3 \times 10^{8}}$
$=1.6 \times 10^{-7} \mathrm{~T}$
16. The errors in the measurement which arise due to unpredictable fluctuations in temperature and voltage supply are :
(1) Least count errors
(2) Random errors
(3) Instrumental errors
(4) Personal errors

Sol. (2)
Error arise due to unpredictable fluctuation in temperature and voltage supply are known as random errors.

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
17. Let a wire be suspended from the ceiling (rigid support) and stretched by a weight W attached at its free end. The longitudinal stress at any point of cross-sectional area A of the wire is :
(1) $\mathrm{W} / 2 \mathrm{~A}$
(2) Zero
(3) $2 \mathrm{~W} / \mathrm{A}$
(4) W/A

Sol. (4)
Stress $=\frac{\text { IRF }}{\mathrm{A}}$
Stress $=\frac{W}{\mathrm{~A}}$
(Here A is Cross-sectional Area)

18. Resistance of a carbon resistor determined from colour codes is $(22000 \pm 5 \%) \Omega$. The colour of third band must be:
(1) Orange
(2) Yellow
(3) Red
(4) Green

Sol. (1)
$\mathrm{R}=\left[22 \times 10^{3} \pm 5 \%\right] \Omega$
According to color code
Third Band \rightarrow Orange
(color code for digit 3 is orange)
19. The work functions of Caesium (Cs), Potassium (K) and Sodium (Na) are $2.14 \mathrm{eV}, 2.30 \mathrm{eV}$ and 2.75 eV respectively. If incident electromagnetic radiation has an incident energy. of 2.20 eV , which of these photosensitive surfaces may emit photoelectrons?
(1) K only
(2) Na only
(3) Cs only
(4) Both Na and K

Sol. (3)
Given energy of photon $\mathrm{E}=2.20 \mathrm{eV}$
We know that e^{-}emits when $\mathrm{h} v>\phi_{0}$
Here, in case of Cs only $h v>\phi_{0}$
20. For Young's double slit experiment, two statements are given below:

Statement I : If screen is moved away from the plane of slits, angular separation of the fringes remains constant.
Statement II : If the monochromatic source is replaced by another monochromatic source of larger wavelength, the angular separation of fringes decreases.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is true but Statment II is false
(2) Statement I is false but Statment II is true
(3) Both Statement I and Statment II is true
(4) Both Statement I and Statment II is false

Sol. (1)
Angular width, $\theta_{\mathrm{w}}=\frac{\lambda}{\mathrm{d}} \quad \theta_{\mathrm{w}}$ independent of D but depends on λ

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
21. The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{\text {th }}$ of Its initial value?
(1) 60 minutes
(2) 80 minutes
(3) 20 minutes
(4) 40 minutes

Sol. (2)
Half life $\mathrm{T}=20 \mathrm{~min}$
Left fraction of activity $\frac{1}{16}$
$\because \frac{\mathrm{R}}{\mathrm{R}_{0}}=\left(\frac{1}{2}\right)^{\mathrm{t} / \mathrm{T}} \quad \frac{1}{16}=\left(\frac{1}{2}\right)^{\mathrm{t} / 20} \quad\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{\mathrm{t} / 20}$
$4=\frac{\mathrm{t}}{20}$
$\mathrm{t}=80 \mathrm{~min}$
22. A football player is moving southward and suddenly turns eastward with the same speed to avoid an opponent.

The force that acts on the player while turning is :
(1) along north-east
(2) along sout-west
(3) along eastward
(4) along northward

Sol. (1)
$\vec{V}_{i}=(\mathrm{V})$ Southward
$\vec{V}_{\mathrm{F}}=(\mathrm{V})$ Easward
$\overrightarrow{\mathrm{V}}_{\mathrm{i}}=\overrightarrow{\mathrm{V}}_{\mathrm{F}}-\overrightarrow{\mathrm{V}}_{\mathrm{i}}$ (Along North-East)

23. In hydrogen spectrum, the shortest wavelength in the Balmer series is λ. The shortest wavelength in the Bracket series is :
(1) 9λ
(2) 16λ
(3) 2λ
(4) 4λ

Sol. (4)
Shotest wavelength in Balmer series when transition of e^{-}from ∞ to $\mathrm{n}=2$

$$
\because \frac{1}{\lambda}=\mathrm{Rz}^{2}\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right]
$$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

$$
\begin{equation*}
\frac{1}{\lambda}=\frac{R}{4} \tag{1}
\end{equation*}
$$

Shortest wavelength is Bracket series when transition of e^{-}from ∞ to $\mathrm{n}=4$

$$
\begin{equation*}
\frac{1}{\lambda^{\prime}}=\mathrm{R}(1)^{2}\left[\frac{1}{4^{2}}-\frac{1}{\infty^{2}}\right] \Rightarrow \frac{1}{\lambda^{\prime}}=\frac{\mathrm{R}}{16} \tag{2}
\end{equation*}
$$

Eq. (1)/Eq. (2)

$$
\frac{\lambda^{\prime}}{\lambda}=\frac{\mathrm{R}}{4} \times \frac{16}{\mathrm{R}} \Rightarrow \lambda^{\prime}=4 \lambda
$$

24. Two bodies of mass m and 9 m are placed a distance R. The gravitational potential the line joining the bodies where to gravitational field equals zero, will ($\mathrm{G}=$ gravitational constant).
(1) $-\frac{16 \mathrm{Gm}}{\mathrm{R}}$
(2) $-\frac{20 \mathrm{Gm}}{\mathrm{R}}$
(3) $-\frac{8 \mathrm{Gm}}{\mathrm{R}}$
(4) $-\frac{12 \mathrm{Gm}}{\mathrm{R}}$

Sol. (1)

Position of Neutral point (Zero Gravitational Field)
$r_{1}=\frac{\sqrt{\mathrm{m}_{1}} R}{\sqrt{\mathrm{~m}_{1}}+\sqrt{\mathrm{m}_{2}}}=\frac{\sqrt{\mathrm{m} R}}{\sqrt{\mathrm{~m}}+\sqrt{9 \mathrm{~m}}}=\frac{\mathrm{R}}{4}$
$\mathrm{r}_{2}=\mathrm{R}-\mathrm{R} / 4=3 \mathrm{R} / 4$
Now Gravitational potential at point P
$\mathrm{V}_{\mathrm{P}}=-\frac{\mathrm{GM}}{\mathrm{R} / 4}-\frac{9(\mathrm{GM})}{3 \mathrm{R} / 4}=\frac{-16 \mathrm{GM}}{\mathrm{R}}$
25. The minimum wavelength of X -ray produced by an electron accelerated throw a potential difference of V volts proportional to :
(1) $\frac{1}{\sqrt{V}}$
(2) V^{2}
(3) \sqrt{V}
(4) $\frac{1}{V}$

Sol. (4)
Minimum wavelength of X-rays is

$$
\lambda_{\min }=\frac{\mathrm{hc}}{\mathrm{eV}} \quad \text { hence } \lambda_{\min } \propto \frac{1}{\mathrm{~V}}
$$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
26. The ratio of radius of gyration of a solid sphere of mass M and radius R about its own axis to the radius of gyration of the thin hollow sphere of same mass and radius about its axis is :
(1) $2: 5$
(2) $3: 5$
(3) $5: 2$
(4) $5: 3$

Sol. (Bonus)
Radius of gyration : $\mathrm{K}=\sqrt{\frac{1}{\mathrm{~m}}}$
$\frac{\mathrm{k}_{\text {solid sphere }}}{\mathrm{k}_{\text {hollow sphere }}}=\sqrt{\frac{2 \mathrm{mR}^{2} / 5 \mathrm{~m}}{2 \mathrm{mR}^{2} / 3 \mathrm{~m}}}=\sqrt{3}: \sqrt{5}$
27. A metal wire has mass $(0.4 \pm 0.002) \mathrm{g}$, radius $(0.3 \pm 0.001) \mathrm{mm}$ and length $(5 \pm 0.02) \mathrm{cm}$. The maximum possibel percentage error in the measurement of density will nearly be :
(1) 1.6%
(2) 1.4%
(3) 1.2%
(4) 1.3%

Sol. (1)

$$
\begin{aligned}
& \frac{\Delta \rho}{\rho}=\frac{\Delta M}{M}+\frac{2 \Delta r}{r}+\frac{\Delta \ell}{\ell} \\
& \frac{\Delta \rho}{\rho} \%=\left[\frac{0.002}{0.4}+\frac{2(0.001)}{(0.3)}+\frac{0.02}{5}\right] \times 100 \%=\frac{1}{2} \%+\frac{2}{3} \%+\frac{2}{5} \%=1.6 \%
\end{aligned}
$$

28. If $\mathfrak{\emptyset} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{dS}}=0$ over a surface, then:
(1) all the charges must necessarily be inside the surface.
(2) the electgric field inside the surface is necessarily uniform
(3) the number of flux lines entering the surface msut be equal to the number of flux lines leaving it.
(4) the magnitude of electric field on the surface is constant.

Sol. (3)
$\phi_{\text {closed }}=0$
So $\phi_{\text {in }}=\phi_{\text {out }}$

Number of field lines entering is equal number of field lines leaving.
29. If the galvanometer G does not show any deflection in the circuit shown, the value of R is given by :

(1) 100Ω
(2) 400Ω
(3) 200Ω
(4) 50Ω

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

Sol. (1)
For no reading galvanometer. Potential across it is same.
$\mathrm{i}_{400 \Omega} \Rightarrow \frac{10-2}{400}=\frac{8}{400}=\frac{1}{50}=\mathrm{i}_{\mathrm{R}}$
$\mathrm{i}_{\mathrm{R}} \Rightarrow \frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{R}} \Rightarrow \frac{2}{\mathrm{R}}=\frac{1}{50} \Rightarrow \mathrm{R}=100 \Omega$
30. The potential energy of a long spring when stretched by 2 cm is U . If the spring is stretched by 8 cm , potential energy stored in it will be :
(1) 8 U
(2) 16 U
(3) 2 U
(4) 4 U

Sol. (2)
$\mathrm{U}=\frac{1}{2} \mathrm{k}(2)^{2}$
$U^{\prime}=\frac{1}{2} \mathrm{k}(8)^{2}$
Eq. (2)/eq. (1)
$\Rightarrow \frac{\mathrm{U}^{\prime}}{\mathrm{U}}=\left(\frac{8}{2}\right)^{2} \quad \Rightarrow \mathrm{U}^{\prime}=16 \mathrm{U}$
31. A Carnot engine has an efficiency of 50% when its source is at a temperature $327^{\circ} \mathrm{C}$. The temperature of the sink is:
(1) $100^{\circ} \mathrm{C}$
(2) $200^{\circ} \mathrm{C}$
(3) $27^{\circ} \mathrm{C}$
(4) $15^{\circ} \mathrm{C}$

Sol. (3)
Efficiency $\% \eta=\left(1-\frac{T_{\text {sink }}}{T_{\text {source }}}\right) \times 100$
$\frac{1}{2}=1-\frac{T_{\text {sink }}}{600} \quad T_{\text {Sink }}=300 \mathrm{~K}=27^{\circ} \mathrm{C}$
32. The angular acceleration of a body, moving along the circumference of a circle, is :
(1) along the tangent to its position
(2) along the axis of rotation
(3) along the radius, away from centre
(4) along the radius towards the centre

Sol. (2)

Along the axis of rotation.

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
33. The ratio of frequencies of fundamental harmonic produced by an open pipe to that of closed pipe having the same length is:
(1) $1: 3$
(2) $3: 1$
(3) $1: 2$
(4) $2: 1$

Sol. (4)
$\frac{\mathrm{n}_{\text {oop }}}{\mathrm{n}_{\text {cop }}}=\frac{\frac{\mathrm{v}}{21}}{\frac{\mathrm{v}}{41}}=\frac{2}{1}$
34. A bullet is fired from a gun at the speed of $280 \mathrm{~m} \mathrm{~s}^{-1}$ in the direction 30° above the horizontal. The maximum height attained by the bulletis $\left(\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}, \sin 30^{\circ}=0.5\right)$
(1) 1000 m
(2) 3000 m
(3) 2800 m
(4) 2000 m

Sol. (1)
$H_{\text {max }}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=\frac{(280)^{2}\left(\sin 30^{\circ}\right)^{2}}{2(9.8)}=1000 \mathrm{~m}$
35. An electric dipole is placed at an angle of 30° with an electric field of intensity $2 \times 10^{5} \mathrm{NC}^{-1}$. It experiences a torque equal to 4 Nm . Calculate the magnitude of charge on the dipole, if the dipole length is 2 cm .
(1) 4 mC
(2) 2 mC
(3) 8 mC
(4) 6 mC

Sol. (2)
$\tau=\mathrm{pE} \sin \theta$

$$
4=\mathrm{q} \times 2 \times 10^{-2} \times 2 \times 10^{5} \times \frac{1}{2}
$$

$$
\mathrm{q}=2 \times 10^{-3} \mathrm{C}=2 \mathrm{mC}
$$

Section-B (Physics)

36. An electric dipole is placed as shown in the figure.

The electric potential (in $10^{2} \mathrm{~V}$) at point P due to the dipole is $\left(\epsilon_{0}=\right.$ permittivity of free space and $\left.\frac{1}{4 \pi \varepsilon_{0}}=\mathrm{K}\right)$:
(1) $\left(\frac{8}{5}\right) \mathrm{qK}$
(2) $\left(\frac{8}{3}\right) q K$
(3) $\left(\frac{3}{8}\right) q K$
(4) $\left(\frac{5}{8}\right) q K$

Sol. (3)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

$$
V=\frac{K q}{2 \times 10^{-2}}-\frac{K q}{8 \times 10^{-2}}=K q\left[\frac{3}{8}\right] \times 10^{2}
$$

37. Two thin lenses are of same focal lengths (f), but one is convex and the other one is concave. When they are placed in contact with each other, the equivalent focal length of the combination will be :
(1) $f / 2$
(2) infinite
(3) Zero
(4) $f / 4$

Sol. (2)
$\frac{1}{f_{e q}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$\frac{1}{f_{e q}}=\frac{1}{f}-\frac{1}{f}$

$$
f_{e q}=\infty
$$

38. In the figure shown here, what is the equivalent focal length of the combination of lenses (Assume that all layers are thin)?

(1) -100 cm
(2) -50 cm
(3) 40 cm
(4) -40 cm

Sol. (1)

Use $\frac{1}{f}=[\mu-1]\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
$\frac{1}{f_{1}}=[1.6-1]\left[\frac{1}{\infty}-\frac{1}{20}\right]=\frac{-3}{100}$
$\frac{1}{f_{2}}=[1.5-1]\left[\frac{1}{20}+\frac{1}{20}\right]=\frac{1}{20} \quad \frac{1}{f_{3}}=\frac{-3}{100}$
$\frac{1}{f_{e q}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}} \quad \frac{1}{f_{e q}}=-\frac{3}{100}+\frac{1}{20}-\frac{3}{100}=\frac{-1}{100}$

$$
f_{e q}=-100 \mathrm{~cm}
$$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
39. For the following logic circuit, the truth table is :

(1) A B Y
$\begin{array}{lll}0 & 0 & 1\end{array}$
$0 \quad 1 \quad 0$
$1 \quad 0 \quad 1$
110
(2) A B Y
$\begin{array}{lll}0 & 0 & 0\end{array}$
(3)

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

(4) A B Y
$\begin{array}{lll}0 & 0 & 0\end{array}$
$0 \quad 1$
$1 \quad 0 \quad 1$
111

Sol. (4)

$$
\begin{aligned}
& y=\overline{\bar{A}} \cdot \overline{\bar{B}}=\overline{\bar{A}}+\overline{\bar{B}} \\
& =(A+B) \text { OR Gate } \\
& \begin{array}{|l|l|l|}
\hline A & B & Y \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

40. The resistance of platinum wire at $0^{\circ} \mathrm{C}$ is 2Ω and 6.8Ω at $80^{\circ} \mathrm{C}$. The temperature coefficient of resistance of the wire is :
(1) $3 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}$
(2) $3 \times 10^{-1}{ }^{\circ} \mathrm{C}^{-1}$
(3) $3 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$
(4) $3 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$

Sol. (1)
$R_{T}=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]$
$6.8=2[1+\alpha(80-\alpha)]$
$\alpha=\frac{2.4}{80}=0.03 / C^{\mathrm{o}}=3 \times 10^{-2} /{ }^{\circ} \mathrm{C}$
41. A horizontal bridge is built across a river. A student standing on the bridge throws a small ball vertically upwards with a velocity $4 \mathrm{~m} \mathrm{~s}^{-1}$. The ball strikes the water surface after 4 s . The height of bridge above water surface is (Take $\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$)
(1) 64 m
(2) 68 m
(3) 56 m
(4) 60 m

Sol. (1)
$S=u t+\frac{1}{2} a t^{2}$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

$-H=4 \times 4-\frac{1}{2} \times 10 \times 4^{2}$
$-H=16-80$
$-H=-64$
$H=64 \mathrm{~m}$
42. A satellite is orbiting just above the surface of the earth with period T. If d is the density of the earth and G is the universal constant of gravitation, the quantity $\frac{3 \pi}{\mathrm{Gd}}$ represents :
(1) T^{3}
(2) $\sqrt{\mathrm{T}}$
(3) T
(4) T^{2}

Sol. (4)
$T=\frac{2 \pi}{\sqrt{G M}} r^{3 / 2} \Rightarrow T^{2}=\frac{4 \pi^{2} R^{3}}{G\left(\frac{4}{3} \pi R^{3} d\right)}(r=R) \quad T^{2}=\frac{3 \pi}{G d}$
43. The radius of inner most orbit of hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What is the radius of third allowed orbit of hydrogen atom?
(1) $1.59 \AA$
(2) $4.47 \AA$
(3) $0.53 \AA$
(4) $1.06 \AA$

Sol. (2)
Radius of $n^{\text {th }}$ orbit in Hydrogen Atom
$r_{n}=0.53 \times \frac{n^{2}}{Z} \AA$
So, radius of third orbit
$r_{3}=0.53 \times \frac{(3)^{2}}{(1)} \AA=4.77 \AA$
44. A wire carrying a current I along the positive x-axis has length L. It is kept in a magnetic field $\vec{B}=(2 \hat{i}+3 \hat{j}-4 \hat{k})$
T. The magnitude of the magnetic force acting on the wire is :
(1) 5 IL
(2) $\sqrt{3} \mathrm{IL}$
(3) 3 IL
(4) $\sqrt{5} \mathrm{IL}$

Sol. (1)
$\vec{F}=I(\vec{\ell} \times \vec{B}) \quad=I[(L \hat{i}) \times(2 \hat{i}+3 \hat{j}-4 \hat{k})]=I(4 L \hat{j}+3 L \hat{k})$
$|\vec{F}|=5 I L$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
45. The net impedance of circuit (as shown in figure) will be :

$220 \mathrm{~V}, 50 \mathrm{~Hz}$
(1) $5 \sqrt{5} \Omega$
(2) 25Ω
(3) $10 \sqrt{2} \Omega$
(4) 15Ω

Sol. (1) $X_{L}=\frac{50}{L} \times 10^{-3} \times 2 \pi \times 50=5 \Omega$
$X_{C}=\frac{1}{2 \pi \times 50 \times \frac{10^{3}}{\pi} \times 10^{-6}}=10 \Omega$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
$=\sqrt{(10)^{2}+(5)^{2}}=5 \sqrt{5} \Omega$
46. 10 resistors, each of resistance R are connected in series to a battery of emf E and negligible internal resistance. Then those are connected in parallel to the same battery, the current is increased n times. The value of n is :
(1) 1
(2) 1000
(3) 10
(4) 100

Sol. (4)
$I_{s}=\frac{E}{10 R}$
$I_{p}=\frac{E}{R / 10}=\frac{10 E}{R}$
$n=\frac{I_{p}}{I_{s}}=100 \Rightarrow n=100$
47. Calcualte the maximum acceleration of a moving car so that a body lyding on the floor of the car remains stationary. The coefficient of statci friction between the body and the floor is $0.15\left(\mathrm{~g}=10 \mathrm{~ms}^{-2}\right)$.
(1) $1.5 \mathrm{~m} \mathrm{~s}^{-2}$
(2) $50 \mathrm{~m} \mathrm{~s}^{-2}$
(3) $1.2 \mathrm{~m} \mathrm{~s}^{-2}$
(4) $150 \mathrm{~m} \mathrm{~s}^{-2}$

Sol. (1)
$F_{S}=\mathrm{ma}$
$f_{L}=\mathrm{ma}_{\text {max }}$
$\mu \mathrm{mg}=\mathrm{ma}_{\text {max }}$
$a_{\text {max }}=\mu g$
$=0.15(10)=1.5 \mathrm{~m} / \mathrm{s}^{2}$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
48. The x-t graph of a particle performing simple harmonic motion is shown in the figure. The acceleration of the particle at $\mathrm{t}=2 \mathrm{~s}$ is :

(1) $\frac{\pi^{2}}{16} \mathrm{~m} \mathrm{~s}^{-2}$
(2) $-\frac{\pi^{2}}{16} \mathrm{~m} \mathrm{~s}^{-2}$
(3) $\frac{\pi^{2}}{8} \mathrm{~ms}^{-2}$
(4) $-\frac{\pi^{2}}{8} \mathrm{~m} \mathrm{~s}^{-2}$

Sol. (2)
$x=A \sin (\omega t)$
$\frac{d x}{d t}=v=A \omega \cos (\omega t)$
$\frac{d v}{d t}=a=-\omega^{2} A \sin (\omega t)$
$a=-\left(\frac{2 \pi}{8}\right)^{2} \times 1 \sin \left(\frac{2 \pi}{8} \times 2\right)$
$\Rightarrow a=-\frac{\pi^{2}}{16} \times \sin \left(\frac{\pi}{2}\right)$
$\therefore a=\frac{-\pi^{2}}{16} \mathrm{~m} / \mathrm{s}^{2}$
49. A bullet from a gun is fired on a rectangular wooden block with velocity u. When bullet travels 24 cm . through the block along its length horizontally, velocity of bullet becomes $\frac{u}{3}$. Then it further penetrates into the block in the same direction before coming to rest exactly at the other end of the block. The total length of the block is :
(1) 28 cm
(2) 30 cm
(3) 27 cm
(4) 24 cm

Sol. (3)
By $v^{2}=u^{2}+2 a s$
$\left(\frac{u}{3}\right)^{2}=u^{2}-2 a x$
$2 a x=u^{2}-\frac{u^{2}}{9}$
$2 a x=\frac{8 u^{2}}{9}$
Similarly from starting
$v^{2}=u^{2}+2 a x$
$0=u^{2}-2 a x_{2}$
$2 a x_{2}=u^{2}$
KANKARBAGH : Sachiwalaya Colony, Patna
BAILEY R8AD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
$\frac{24}{x_{2}}=\frac{8}{9}$
$x_{2}=27 \mathrm{~cm}$
50. A very long conducting wire is bent in a semi -circular shape from A to B as shown in figure. The magnetic field at point P for steady current configuration is given by:

(1) $\frac{\mu_{0} \mathrm{i}}{4 \mathrm{R}}\left[1-\frac{2}{\pi}\right]$ pointed away from page
(2) $-\frac{\mu_{0} \mathrm{i}}{4 \mathrm{R}}\left[1-\frac{2}{\pi}\right]$ pointed into the page
(3) $\frac{\mu_{0} i}{4 R}$ pointed into the page
(4) $\frac{\mu_{0} \mathrm{i}}{4 \mathrm{R}}$ pointed away from the page

Sol. (1)
$B=\frac{\mu_{0}}{4 \pi} \frac{I}{R}(\pi)-\frac{\mu_{0}}{4 \pi} \frac{2 I}{R}=\frac{\mu_{0} I}{4 R}\left[1-\frac{2}{\pi}\right]$ outward i.e away from page.

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner

Section-A (Chemistry)

51. Amongst the given options which of the following molecules/ion acts as a Lewis acid?
(1) BF_{3}
(2) OH
(3) NH_{3}
(4) $\mathrm{H}_{2} \mathrm{O}$

Sol. (1)
due to presence of vaccant orbital in boron
52. Which amongst the following options is correct graphical representation of Boyle's
(1)

(2)

(3)

(4)

Sol. (4)
Boyle's law is defined at constant temperature for an ideal gas.
$\mathrm{P} \propto \frac{1}{\mathrm{~V}}$
$\mathrm{P}=(\mathrm{nRT})\left(\frac{1}{\mathrm{~V}}\right)$ [straight line equation]
\Rightarrow Slope $\uparrow \Rightarrow \mathrm{T} \uparrow \therefore \mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
53. Identify product (A) in the following reaction :

(1)

(2)

(3)

(4)

Sol. (3)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

(A)
54. Which of the following stateemnts are NOT correct?
(A) Hydrogen is used to reduce heavy metal oxides to metals.
(B) Heavy water is used to study reaction mechanism.
(C) Hydrogen is used to make saturated fats from oils.
(D) The H-H bond dissociation enthalpy is lowest as compared to a signle bond between two atoms of any element.
(E) Hydrogen reduces oxides of metals that are more active than iron.

Choose the most appropriate answer from the options given below :
(1) D, E only
(2) A, B, C only
(3) B, C, D, E only
(4) B, D only

Sol. (1)
(D) $\mathrm{H}-\mathrm{H}$ bond is one of the strongest bond due to its smaller size of orbital participating in bond information.
(E) Reducess oxide of metal having less reactivity.
55. Given below are two stateemnts : one is labelled as Assertion A and the other is labelled as Reason R :

Assertion A : In equation $\Delta_{\mathrm{r}} \mathrm{G}=-\mathrm{nFE}$ cell , value of $\Delta_{\mathrm{r}} \mathrm{G}$ depends on n .
Reasons R : $\mathrm{E}_{\text {cell }}$ is an intensive property and $\Delta_{\mathrm{r}} \mathrm{G}$ is an extensive property.
In the light of the above statements, choose the correct answer from the options given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explantion of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (3)
$\Delta_{\mathrm{r}} \mathrm{G}=-\mathrm{nFE}_{\text {cell }}$
$\mathrm{E}_{\text {cell }}$ is an intensive property and $\Delta_{\mathrm{r}} \mathrm{G}$ is an extensive property as it depends on number of e^{\ominus} transferred in cell reaction

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
56. Identify the product in the following reaction :

(1)

(2)

(3)

(4)

Sol. (4)

57. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R :

Assertion A : Helium is used to dilute oxygen in diving apparatus.
Reasons R : Helium has high solubility in O_{2}.
In the light of the above statements, choose the correct answer from the option s given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explantion of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (1)
Assertion is true because He has low solubility in blood. (NCERT)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
58. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R :

Assertion A : A reaction can have zero activation energy.
Reasons R: The minimum extra amount of energy absorbed by reactant moleucles so that their energy becomes equal to threshold value, is called activation energy.
In the light of the above statements, choose the correct answer from the option s given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explantion of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (2)
A reaction cannot have zero activation energy. E_{a} is minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value.
59. Weight (g) of two moles of the organic compound, which os obtained by heating sodium ethanoate with sodium hydroxide in presence of calcium oxide is :
(1) 30
(2) 18
(3) 16
(4) 32

Sol. (4)

Weight $=2 \times 16=32 \mathrm{~g}$
60. Amongst the following the total number of speices NOT having eight electrons around central atom in its outer most shell, is $\mathrm{NH}_{3}, \mathrm{AlCl}_{3}, \mathrm{BeCl}_{2}, \mathrm{CCl}_{4}, \mathrm{PCl}_{5}$:
(1) 4
(2) 1
(3) 3
(4) 2

Sol. (3)
AlCl_{3} and BeCl_{2} has $6 \& 4$ electon in valnace shell respectivel and PCl_{5} has 10 electron So, these 3 compound has no 8 electron in valnace shell of central atom.
61. The relation between $n_{m},\left(n_{m}=\right.$ the number of permissible values of magnetic quantum number (m) for a given value of azimuthal quantum number (l), is
(1) $\mathrm{n}_{\mathrm{m}}=2 l^{2}+1$
(2) $\mathrm{n}_{\mathrm{m}}=l+2$
(3) $l=\frac{\mathrm{n}_{\mathrm{m}}-1}{2}$
(4) $l=2 \mathrm{n}_{\mathrm{m}}+1$

Sol. (3)

$$
\mathrm{n}_{\mathrm{m}}=-l \text { to }+l \quad \text { that is } \mathrm{n}_{\mathrm{m}}=2 l+1 \quad l=\frac{\mathrm{n}_{\mathrm{m}}-1}{2}
$$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
62. Which of the folloing reactions will NOT given primary amine as the product?
(1) $\mathrm{CH}_{3} \mathrm{NC} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{(\text {(}) \mathrm{Hill}_{4}}$ Product
(2) $\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{-}]{(\text {(}) \mathrm{Lill}_{4}}$ Pr oduct
(3) $\mathrm{CH}_{3} \mathrm{CONH}_{2} \xrightarrow{\mathrm{Br}_{2} / \mathrm{KOH}}$ Pr oduct
(3)
$\mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\text { (i) } \mathrm{H}_{3} \mathrm{O}^{\mathrm{O}}]{\text { (i) } \mathrm{LiH}_{4}}$ Product

Sol. (1)
(1) $\mathrm{CH}_{3}-\mathrm{CN} \xrightarrow[\text { (i) } \mathrm{H}_{3} \mathrm{O}^{\mathrm{o}}]{\text { (i) } \mathrm{LiAH}_{4}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2} 1^{\circ}$ Amine
(2)

(3)

(4)

63. Homoleptic complex from the following complexes is:
(1) Pentaamminecarbonatocobalt (III) chloride
(2) Triamminetriaquachromium (III) chloride
(3) Potassium trioxalatoaluminate (III)
(4) Diamminechloridonitrito-N-platinum (II)

Sol. (3)
Homoleptic complex are those complex containg only one type of ligand
64. Some tranquilizers are listed below. Which one from the follwoing belongs to barbiturates ?
(1) Valium
(2) Veronal
(3) Chlordiazepoxide
(3) Meprobamate

Sol. (2)
Veronal is an example of barbiturates.
65. Which amongst the following molecules of polymerization produces neoprene :
(1) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(2)

(3) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(4)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

Sol. (4)

66. The right option for the mass of CO_{2} produced by heating 20 g of 20% pure limestone is (Atomic mass of $\mathrm{Ca}=40$)

$$
\left[\mathrm{CaCO}_{3} \xrightarrow{1200 \mathrm{~K}} \mathrm{CaO}+\mathrm{CO}_{2}\right]
$$

(1) 2.64 g
(2) 1.32 g
(3) 1.12 g
(4) 1.76 g

Sol. (4)
Weight of impure limestone $=20 \mathrm{~g}$
Weight of pure limestone $\left(\mathrm{CaCO}_{3}\right)=20 \%$ of 20 g
$=\frac{20}{100} \times 20=4 \mathrm{~g} \quad \mathrm{n}_{\mathrm{CaCO}_{3}}=\frac{4}{100}=0.04$
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
$\mathrm{n}=0.04 \quad \mathrm{n}=0.04$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{CO}_{2}} & =0.04 \\
\mathrm{~W}_{\mathrm{CO}_{2}} & =0.04 \times 44=1.76 \mathrm{~g}
\end{aligned}
$$

67. Which one of the following statement is correct?
(1) The bone in human body is an inert and unchanging substance.
(2) Mg plays roles in neuromuscular function and interneuronal transmission.
(3) The daily requirement of Mg and Ca in the human body is estimated to the $0.2-0.3 \mathrm{~g}$.
(4) All enzymes that utilise ATP in phosphate trnasfer require Ca as the cofactor.

Sol. (3)
The daily requirement in the human body has been estimated to be 200-300 mg (NCERT : s-block) Biological importance of magnesium and calcium.

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
68. Match List-I with List-II

List-I

(A) Coke
(B) Diamond
(C) Fullerence
(D) Graphite

List-II

(I) Carbon atoms are sp^{3} hybridised
(II) Used as a dry lubricant
(III) Used as a reducing agent
(IV) Cage like molecules

Choose the correct answer from the options given below :
(1) A-III, B-I, C-IV, D-II
(2) A-III, B-IV, C-I, D-II
(3) A-II, B-IV, C-I, D-III
(4) A-IV, B-I, C-II, D-III

Sol. (1)
Coke : It is used as reducing agent in carbon reduction methods. (in metallurgical process)
Diamond : It is a allotrope of carbon in which each carbon is Sp^{3} hybridised.

Fullerene : It contains pentagonal \& hexagonal rings (cage like structure)
Graphite : It is soft solid because graphite layers are bonded with weak Vander Wall attractions.
69. The stability of Cu^{2+} is more than Cu^{+}salts in aqueous solution due to :
(1) hydration energy
(2) second ionisation enthalpy
(3) first ionisation enthalpy
(4) enthalpy of atomization

Sol. (1)
Second ionization enthalpy of copper is compensated by hydration enthalpy because Cu^{2+} has much higher hydration enthalpy than Cu^{+}.
70. The given compound

is an example of
(1) allylic halide
(2) vinylic halide
(3) benzylic halide
(4) aryl halide

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website : www.eduriseindia.com

Sol. (1)

Allylic halide
71. Given below are two statements :

Statement I : A unit formed by the attachment of a base to 1' position of sugar is known as nucleoside
Statement II : When nucleoside is linked to phosphorous acid at 5'-position of sugar moiety, we get nucleotide.
In the light of the above statements, choose the correct answer from the options given below :
(1) Statement I is true but Statement II is false.
(2) Statement I is false but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (1)

Nucleoside

Base link with L' position of sugar in nucleoside so statement I is correct
72. In Lassaigne's extract of an organic compound both nitrogen and sulphur are present, which gives blood red colour with Fe^{3+} due to the formation of
(1) $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]^{4-}$
(2) $[\mathrm{Fe}(\mathrm{SCN})]^{2+}$
(3) $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
(4) NaSCN

Sol. (2)
In case nitrogen and sulphur both are present in an organic compound, sodium thiocyanate is formed, it give blood red colour and no prussian blue since there are no free cyanide Ions

$$
\begin{aligned}
& \mathrm{Na}+\mathrm{C}+\mathrm{N}+\mathrm{S} \rightarrow \mathrm{NaSCN} \\
& \mathrm{Fe}^{+3}+\mathrm{SCN}^{\ominus} \longrightarrow\left[\underset{\text { Blood red }}{ } \longrightarrow(\mathrm{Fe}(\mathrm{SCN})]^{2+}\right.
\end{aligned}
$$

73. The number of σ bonds, π bonds and lone pair of electrons in pyridine, respecively are :
(1) $11,3,1$
(2) $12,2,1$
(3) $11,2,0$
(4) $12,3,0$

Sol. (1)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

74. A compound is formed by two elements A and B. The element B forms cubic close packed structrue and atoms of A occupy $1 / 3$ of tetrahedral voids. If the formula of the compound is $A_{x} B_{y}$, then the value of $x+y$ is in option
(1) 3
(2) 2
(3) 5
(4) 4

Sol. (3)
A
$\frac{1}{3} \mathrm{THV}$
CCP
$\Rightarrow \mathrm{Z}_{\mathrm{A}}=\frac{1}{3} \times 8=\frac{8}{3}$
$Z_{B}=4$
$\Rightarrow=\frac{8}{3}: 4$
$\Rightarrow \frac{2}{3}: 1$
$2: 3$

Simplest formula $\begin{array}{cc}\mathrm{A}_{2} & \mathrm{~B}_{3} \\ \downarrow & \downarrow^{\prime} \\ \mathrm{x} & \mathrm{y}\end{array}$
$x+y=5$
75. The correct order of energies of molecular orbitals of N_{2} molecule is :
(1) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{*} 2 \mathrm{~s}<\sigma 2 \mathrm{p}_{\mathrm{z}}<\sigma^{*} 2 \mathrm{p}_{\mathrm{z}}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}\right)$
(2) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{*} 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma 2 \mathrm{p}_{\mathrm{z}}<\sigma^{*} 2 \mathrm{p}_{\mathrm{z}}$
(3) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma * 2 \mathrm{~s}<\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma 2 \mathrm{p}_{\mathrm{z}}<\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}=\pi * 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{*} 2 \mathrm{p}_{\mathrm{z}}$
(4) $\sigma 1 \mathrm{~s}<\sigma^{*} 1 \mathrm{~s}<\sigma 2 \mathrm{~s}<\sigma^{*} 2 \mathrm{~s}<\sigma 2 \mathrm{p}_{\mathrm{z}}\left(\pi 2 \mathrm{p}_{\mathrm{x}}=\pi 2 \mathrm{p}_{\mathrm{y}}\right)<\left(\pi^{*} 2 \mathrm{p}_{\mathrm{x}}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}\right)<\sigma^{*} 2 \mathrm{p}_{\mathrm{z}}$

Sol. (3)
Molecular orbital (energy) diagram/ sequence of N_{2}

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

76. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R :

Assertion A: Metallic sodium dissolves in liquid ammonia giving a deep blue solution, which is paramagnetic.
Reasons R: The deep blue solution is due to the formation of amide.
In the light of the above statements, choose the correct answer from the option s given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explantion of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (1)
Assertion is correct because all Alkali metals gives deep blue solution by giving electrons.
Reason : is incorrect because deep blue solution appears due to the presence of ammoniated electron or solvated electrons.
77. Which one is an example of heterogenous catalysis?
(1) Decomposition of ozore in presence of nitrogen monoxide
(2) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron.
(3) Oxidation of sulphur dioxide into sulphur trioxide in the presence of oxide of nirtogen.
(4) Hydrolysis of sugar catalysed by H^{+}ions.

Sol. (2)
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \xrightarrow{\mathrm{Fe}(\mathrm{s})} 2 \mathrm{NH}_{3(\mathrm{~g})}$
(Reactants and catalyst are in different phase) It is heterogeneous reaction

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
78. For a certain reaction, the rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$, when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would
(1) increase by a factor of nine
(2) increase by a factor of three.
(3) decrease by a factor of nine
(4) increase by a factor of six

Sol. (1)
Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$
If [A] is tripled and [B] is kept constant.
$\mathrm{r}^{1}=\mathrm{k}[3 \mathrm{~A}]^{2}[\mathrm{~B}] \quad \mathrm{r}^{1}=9 \mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}] \quad \mathrm{r}^{1}=9 \mathrm{r}$
Increased by a factor of nine
79. Select the correct statements from the following :
(A) Atoms of all elements are composed of two fundamental particles.
(B) The mass of the electron is $9.10939 \times 10^{-31} \mathrm{~kg}$.
(C) All the isotopes of a given element show same chemical properties
(D) Protons and electrons are collectively known as nucleons.
(E) Dalton's atomic theory, regarded the atom as an ultimate particle of matter.

Choose the correct answer from the options given below :
(1) A and E only
(2) B, C and E only
(3) A, B and C only
(4) C, D and E only

Sol. (2)
It is statement based question.
Statements B, C \& E are correct.
(B) Mass of the electron is $9.10939 \times 10^{-31} \mathrm{~kg}$
(C) All the isotopes of given elements show same chemical properties.
(E) Dalton's atomic theory, regarded the atom as an ultimate particle of matter.
80. Consider the following reaction and identify the poroduct (P).

3-Methylbutan-2-ol

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
(1) $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3} \mathrm{Br}}{\mathrm{CH}}-\mathrm{CH}-\mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3}-\underbrace{\mathrm{CH}_{3}}_{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

(4) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$

Sol. (3)

($\alpha_{H}=4$)

81. Taking stability as the factor, which one of the following represents correct relationship?
(1) $\mathrm{AlCl}>\mathrm{AlCl}_{3}$
(2) $\mathrm{TlI}>\mathrm{TlI}_{3}$
(3) $\mathrm{TlCl}_{3}>\mathrm{TlCl}$
(4) $\mathrm{InI}_{3}>\operatorname{InI}$

Sol. (2)
82. Complete the following reaction :

[C] is \qquad
(1)

(2)

(3)

(4)

Sol. (2)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
\qquad

(Hydrolysis of Cyanide)
\& (dehydration of alcohol)
83. The conductivity of centimolar solution of KCl at $25^{\circ} \mathrm{C}$ is $0.0210 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and the resistance of the cell containing the solution at $25^{\circ} \mathrm{C}$ is 60 ohm . The value of cell constant is
(1) $1.26 \mathrm{~cm}^{-1}$
(2) $3.34 \mathrm{~cm}^{-1}$
(3) $1.34 \mathrm{~cm}^{-1}$
(4) $3.28 \mathrm{~cm}^{-1}$

Sol. (1)
Centimolar solution $=\frac{1}{100} \mathrm{M}=0.01 \mathrm{M}$
Conductivity $(\mathrm{k})=0.0210 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$
Resistance $(R)=60$ ohm
$\mathrm{k}=\frac{1}{\mathrm{R}}\left(\frac{\ell}{\mathrm{A}}\right) \quad \Rightarrow 0.0210=\frac{1}{60}\left(\frac{\ell}{\mathrm{~A}}\right) \Rightarrow \frac{\ell}{\mathrm{A}}=1.26 \mathrm{~cm}^{-1}$
84. The element expected to form largest ion tio achieve the nearest noble gas configuration is :
(1) N
(2) Na
(3) O
(4) F

Sol. (1)
After achieve the nearest noble gas configuration all species becomes isoelectonic so lagest size will be poses by N due to its lowest atomic number.
85. Intermolecular forces are forces of attraction and repulsion between interacting particles that will include :
(A) dipole-dipole forces.
(B) dipole-induced dipole forces
(C) hydrogen bonding
(D) covalent bonding
(E) dispersion forces.

Choose the most appropriate answer from the options given below :
(1) A, B, C, E are correct
(2) A, C, D, E are correct
(2) B, C, D, E are correct
(4) A, B, C, D are correct

Sol. (1)
Intermolecular forces means force of attraction between two or more molecules dipole-dipole (attraction between two or more polar molecules).

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40

Dipole induced dipole (attraction between polar and non polar molecules)
Hydrogen bonding (it is a special type of dipole-dipole and ion-dipole attraction)
Dispersion forces (mainly acts between non polar molecules).
Covalent bonding (acts between atom not between molecules)

Section-B (Chemistry)

86. The reaction that does NOT take place in a blast furnace between 900 K to 1500 K temperatrue range during extraction of iron is :
(1) $\mathrm{C}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{CO}$
(2) $\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$
(3) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow 2 \mathrm{FeO}+\mathrm{CO}_{2}$
(4) $\mathrm{FeO}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$

Sol. (3)
Reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow 2 \mathrm{FeO}+\mathrm{CO}_{2}$
This reaction takes place at temperature ($500 \mathrm{~K}-800 \mathrm{~K}$) not at (900 K to 1500 K)
87. Match List-I with List-II.

List-I (Oxoacids of sulphur)

(A) Peroxodisul phuric acid
(B) Sulphuric acid
(C) Pyrosulphuric acid
(D) Sulphurous acid

List-II (Bonds)

(I) Two $\mathrm{S}-\mathrm{OH}$, Four $\mathrm{S}=\mathrm{O}$, One $\mathrm{S}-\mathrm{O}-\mathrm{S}$
(II) Two $\mathrm{S}-\mathrm{OH}$, One $\mathrm{S}=\mathrm{O}$
(III) Two $\mathrm{S}-\mathrm{OH}$, Four $\mathrm{S}=\mathrm{O}$, One $\mathrm{S}-\mathrm{O}-\mathrm{O}-\mathrm{S}$
(IV) Two S-OH, Two $\mathrm{S}=\mathrm{O}$

Choose the correct answer from the options given below :
(1) A-I, B-III, C-IV, D-II
(2) A-III, B-IV, C-II, D-I
(3) A-I, B-III, C-II, D-IV
(4) A-III, B-IV, C-I, D-II

Sol. (4)
The given acid in list-I has following formula
(A) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(B) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(D) $\mathrm{H}_{2} \mathrm{SO}_{3}$
88. Pumice stone is an example of
(1) solid sol
(2) foam
(3) sol
(4) gel

Sol. (1)
Pumice stone is an example of solid state

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
89. Given below are two stateemnts :

Statement I : The nutrient deficient bodies lead to eutrophication.
Statement II : Eutrophication lead decrease in the level of oxygen in the bodies.
In the light of the above statements of the correct answer from the options below :
(1) Statement I is correct but Statement II is false.
(2) Statement I is incorrect but Statement II is true
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (2)
Nutrient enriched water bodies lead to eutrophication.
90. Identify the final product [D] obtained the follwoing sequence of reactions

(1) $\mathrm{C}_{4} \mathrm{H}_{10}$
(2) $\mathrm{HC} \equiv \mathrm{C}^{\ominus} \mathrm{Na}^{+}$
(3)

(4)

Sol. (3)

91. Consider the following compounds/species :
(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

The number of compound/species which obey Huckel's rule is.....
(1) 2
(2) 5
(3) 4
(4) 6

Sol. (3)
Huckle's rule $=(4 \mathrm{n}+2) \pi$ electrons
Comp (i), (ii), (v), (vii) obey Huckle's rule
92. Consider the following reaction :

Identify products A and B.
(1)

(2)

(3)

(4)

Sol. (1)

93. Identify the major product obtained in the following reation :

(1)

(2)

(3)

(4)

Sol. (1)

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
94. Which complex compound is most stable?
(1) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{NO}_{3}$
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right]\left(\mathrm{NO}_{3}\right)_{2}$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)_{3}\right]$

Sol. (1)
(en) is ligand produces chelating effect and hence increases the stability of complex .
95. Theequilibrium concentrations of the speices in the reaction $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ are $2,3,10$ and $6 \mathrm{~mol}^{-1}$, respectively at $300 \mathrm{~K} . \Delta \mathrm{G}^{\circ}$ for the reaction is $(\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} \mathrm{K})$
(1) -1381.80 cal
(2) -13.73 cal
(3) 1372.60 cal
(4) -137.26 cal

Sol. (1)
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
$[\mathrm{A}]=2 \mathrm{~mol} \mathrm{~L}^{-1}$
[B] $=3 \mathrm{~mol} \mathrm{~L}^{-1}$
$[\mathrm{C}]=10 \mathrm{~mol} \mathrm{~L}^{-1}$
$[\mathrm{D}]=6 \mathrm{~mol} \mathrm{~L}^{-1}$
$\Delta \mathrm{G}^{\mathrm{o}}=-2.303 \mathrm{RT} \log \mathrm{K}_{\text {eq }}$
$=-2.3030 \mathrm{RT} \log \frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
$=-2.303 \times 2 \times 300 \times \log \frac{10 \times 6}{2 \times 3}$
$=-2.303 \times 2 \times 300 \times \log ^{10}=-1381.8 \mathrm{cal}$
96. What fraction of one edge centred octahedral void lies in one unit cell of fcc?
(1) $1 / 4$
(2) $1 / 12$
(3) $1 / 2$
(4) $1 / 3$

Sol. (1)
\rightarrow Edge centered octahedral void is shared between four unit cells
\rightarrow Per unit cell contribution is $1 / 4$
97. Which amongst the following options is the correct relation between change in enthalpy and change in internal energy?
(1) $\Delta \mathrm{H}-\Delta \mathrm{U}=-\Delta \mathrm{uRT}$
(2) $\Delta H+\Delta U=\Delta u R$
(3) $\Delta \mathrm{H}=\Delta \mathrm{U}-\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
(4) $\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$

Sol. (4)
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
98. On balancing the given redox reaction,

$$
\mathrm{aCr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{bSO}_{3}^{2-}(\mathrm{aq})+\mathrm{cH}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{aaCr}^{3+}(\mathrm{aq})+\mathrm{bSO}_{4}^{2-}(\mathrm{aq})+\frac{\mathrm{c}}{2} \mathrm{H}_{2} \mathrm{O}(\ell)
$$

the coefficients a, b and c are found to be , respectively-
(1) $1,8,3$
(2) $8,1,3$
(3) $1,3,8$
(4) $3,8,1$

Sol. (3)
Reaction has to be balanced in acidic medium ' O ' atoms are balanced by addling $\mathrm{H}_{2} \mathrm{O}$ and then H -atom is balanced by adding H^{+}ions and charge is balanced by e^{\ominus}

Oxidation: $\left.\mathrm{SO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{\ominus}\right] \times 3$
Reduction: $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{\ominus} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{SO}_{3}^{2-}+8 \mathrm{H}^{\oplus} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
$a=1$
$\mathrm{b}=3$
$\mathrm{c}=8$
99. Which of the following statements are INCORRECT ?
(A) All the transition metals except secandium form MO oxides which are ionic.
(B) The highest oxidation number corresponding to the group number in tranisition metal oxides is attained in $\mathrm{Sc}_{2} \mathrm{O}_{3}$ to $\mathrm{Mn}_{2} \mathrm{O}_{7}$.
(C) Basic character increases from $\mathrm{V}_{2} \mathrm{O}_{3}$ to $\mathrm{V}_{2} \mathrm{O}_{4}$ to $\mathrm{V}_{2} \mathrm{O}_{5}$.
(D) $\mathrm{V}_{2} \mathrm{O}_{4}$ dissolves in acids to give VO_{4}^{3-} salts.
(E) CrO is basic but $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is amphoteric

Choose the correct answer from the options given below :
(1) C and D only
(2) B and C only
(3) A and E only
(4) B and D only

Sol. (1)
As oxidation number increases acid strength increases and basic character decarases so option C is incorrect.
When $\mathrm{V}_{2} \mathrm{O}_{4}$ dissolves in acids gives salt having same oxidation number
100. Which amongst the following will be most readily dehydrated under acidic conditions?
(1)

(2)

(3)

(4)

Sol. (4)
Due to presence of of conjugation in product.

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

Section-A (Biology : Botany)

101. In tissue culture experiments. leaf mesophyll cells are put in a culture medium to form callus. This phenomenon may be called as:
(1) Development
(2) Senescence
(3) Differentiation
(4) Dedifferentiation

Sol. (4)
NCERT (XII) Page No. 177
102. In the equation GPP $-\mathbf{R}=\mathbf{N P P}$ GPP is Gross Primary Productivity NPP is Net Primary Productivity R here is
\qquad .
(1) Respiratory loss
(2) Reproductive allocation
(3) Photosynthetically active radiation
(4) Respiratory squotient

Sol. (1)
NCERT (XII) Page No. 243
103. Given below are two statement:

Statement I :The forces generated by transpiration can lift a xylem-xized column of water over 130 meters height.

Statemenst II :Transpiration cools leaf surfaces sometimes 10 to 15 degrees, by evaporative cooling.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is correct but Statement II is incorrect.
(2) Statement I is incorrect but Statement II is correct.
(3) Both Statement I and Statement II are correct.
(4) Both Statement I and Statement II are incorrect.

Sol. (3)
NCERT (XI) Page No. 188-189
104. In angiosperm the haploid, diploid and triploid structures of a fertilized embrvo sac sequentially are :
(1) Synergids, Zygote and Primary endosperm nucleus.
(2) Synergids, antipodals and Polar nuclei
(3) Synergids, Primary endosperm nucleus and zygote
(4) Antipodals, synergids, and primary endosperm nucleus

Sol. (1)
NCERT (XII) Page No. 34
105. Given below are two statement:

Statement I : Endarch and exarch are the terms often used for describing the position of secondary xylem in the plant body
Statement II : Exarch condition is the most common feature of the root system.
In the light of the above statements, choose the correct answer from the options given below :

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
(1) Statement I is correct but Statement II is false.
(2) Statement I is incorrect but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statemenst I and Statement II are false.

Sol. (2)
NCERT (XI) Page No. 87
106. How many ATP and NADPH_{2} are required for the synthesis of one molecule of Glucose during Calvin cycle?
(1) 12 ATP and $16 \mathrm{NADPH}_{2}$
(2) 18 ATP and $16 \mathrm{NADPH}_{2}$
(3) 12 ATP and $12 \mathrm{NADPH}_{2}$
(4) 18 ATP and $12 \mathrm{NADPH}_{2}$

Sol. (4)
NCERT (XI) Page No. 218
107. Spraying of which of the following phytohormone on juvenile conifers helps in hastening the maturity period, that leads to early seed production?
(1) Zeatin
(2) Abscisic acid
(3) Indole-3-butyric Acid
(4) Gibberllic Acid

Sol. (4)
NCERT (XI) Page No. 249
108. Among eukaryotes replication of DNA takes place in -
(1) G_{1} phase
(2) G_{2}
(3) M Phase
(4) S phase

Sol. (4)
NCERT (XI) Page No. 163-164
109. Identify the correct statements :
A. Detrivores perform fragmentation
B. The humus is further degraded by some microbes during mineralization.
C. Water soluble inorganic nutrients go down into the soil and get kprecipitated by a process called leaching.
D. The detritus food chain begins with living organisms :
E. Earthworms break down detritus into smaller particles by a process called catabolism.

Choose the correct answer from the options given below :
(1) C, D, E only
(2) D, E, A only
(3) A, B, C only
(4) B, C, D only

Sol. (3)
NCERT (XII) Page No. 243-244
110. Identify the fair of heterosporous pteridophytes among the following :
(1) Psilolum and Salvinia
(2) Equisetum and Salvinia
(2) Lycopodium and Selaginella
(4) Selaginella and Salvinia

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com

Sol. (4)
NCERT (XI) Page No. 38
111. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R :

Assertion A : First ATP is used in converting glucose into glucose-6-phosphate and second ATP is used in conversion of fructose-6- phosphate into fructose-1-6-diphosphate.
In the light of the above statements, choose the correct answer from the options given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true.
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (3)
NCERT (XI) Page No. 229
112. Among 'The Evil Quartat', which one is considered the most important cause driving extinction of species?
(1) Alien species invasions.
(2) Co-extinctions
(3) Habitat loss and fragmenstation
(4) Over exploitation for economic gain

Sol. (3)
NCERT (XI) Page No. 264-265
113. Unequivocal proof that DNA is the genetic material was first proposed by
(1) Avery, Macleoid and McCarthy
(2) Wilkins and Franklin
(3) Frederick Griffith
(4) Alfred Hershey and Martha Chase

Sol. (4)
NCERT (XII) Page No. 102
114. The thikness of onone in a column of air in the atmosphere is measured in terms of:
(1) Decameter
(2) Kilobase
(3) Dobson units
(4) Decibels

Sol. (3)
NCERT (XII) Page No. 282
115. Which micronutrient is required for splitting of water molecule during photosynthesis?
(1) Magnesium
(2) Copper
(3) Manganese
(4) Molybdenum

Sol. (3)
NCERT (XI) Page No. 198
116. Family Fabaceae differs from Solanaceae and Liliaceae. With respect to the stamens, pick out the characteristics specific to family Fabaceae but not found in Solanaceae or Liliaceae.
(1) Monoadelphous and Monothecous anthers
(2) Epiphyllous and Dithecous anthers
(3) Diadelphous and Dithecous anthers
(4) Polyadelphous and epipetalous stamens

Sol. (3)
NCERT (XI) Page No. 79

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
117. Given below are two statements : One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: The first stage of gametophyte in the life cycle of moss is protonema stage.
Reason R: Protonema develops directly from spores produced in capsule.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) \mathbf{A} is corect but \mathbf{R} is not correct,
(2) \mathbf{A} is not correct but \mathbf{R} is correct,
(3) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are correct but \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (3)
NCERT (XI) Page No. 36
118. Expressed Sequence Tags (ESTs) refers to
(1) All genes whether expressed or unexpressed.
(2) Certain important expressed genes.
(3) All genes that are expressed as RNA.
(4) All genes that are expressed as proteins.

Sol. (3)
NCERT (XII) Page No. 119
119. Frequency of recombination between gene pairs on same chromosome as a measure of the distance between gencs to map their position on chromosome, was used for the first time by
(1) Alfred Sturtevant
(2) Henking
(3) Thomas Hunt Morgan
(4) Sutton and Boveri

Sol. (1)
NCERT (XII) Page No. 83
120. Large, colourful, fragrant flowers with nectar are seen in :
(1) Bat pollinated plants
(2) Wind pollinated plants
(3) Insect pollinated plants
(4) Bird pollinated plants

Sol. (3)
NCERT (XII) Page No. 30
121. Movement and accumulation of ions across a membrane against their concentration gradient can be explained by
(1) Possive Transport
(2) Active Transport
(3) Osmosis
(4)Facilitated Diffusion

Sol. (2)
NCERT (XI) Page No. 178
122. Upon exposure to UV radiation, DNA stained with ethidium bromide will show
(1) Bright yellow colour
(2) Bright orange colour
(3) Bright red colour
(4) Birght blue colour

Sol. (2)
NCERT (XII) Page No. 198

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
123. Given below are two statements: One is Labelled as Assertion A and the other is labelled as Reason \mathbf{R} :

Assertion A: Late wood has fewer xylary elements with narrow vessels.
Reason \mathbf{R} : Cambium is less active in winters,
In the light of the above statements, choose the correct answer from the options given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true.
(3) Both \mathbf{A} and \mathbf{R} are true and R is the correct explanation of \mathbf{A}
(4) Both \mathbf{A} and \mathbf{R} are true but R is NOT the correct explanation of \mathbf{A}.

Sol. (3)
NCERT (XI) Page No. 96
124. Axile placentation is abserved in
(1) Tomato, Dianthus and Pen
(2) China rose, Petunia and lemon
(3) Mustard, Cucumber and Primrose
(4) China rose, Beans and Lupin

Sol. (2)
NCERT (XI) Page No. 75
125. The phenomenon of pleiotropism refers to
(1) A single gene aggecting multiple phenotypic expression.
(2) More than two genes affectiong a single character.
(3) Presece of several alleles of a single gene controlling a single crossover.
(4) Rresence of two alleles, each of the two genes controlling a single trait.

Sol. (1)
NCERT (XII) Page No. 85
126. During the purification process for recombinant DNA technology, addition of chilled ethanol precipitates out
(1) Histones
(2) Polysaccharides
(3) RNA
(4) DNA

Sol. (4)
NCERT (XII) Page No. 201
127. Which hormone promotes internode/petiole elongation in deep water rice?
(1) Ethylene
(2) 2, 4-D
(3) GA_{2}
(4) Pachytene

Sol. (1)
NCERT (XI) Page No. 250
128. The process of appearance of recombination nodules occurs at which sub stage of prophase I in meiosis?
(1) Diplotent
(2) Diakinesis
(3) Zygotene
(4) Pachytene

Sol. (4)
NCERT (XI) Page No. 268

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
129. What is the role of RNA polymerase III in the process of transcription in Eukaryotes?
(1) Transcription of precursor of mRNA
(2) Transcription of only snRNAs
(3) Transcription of rRNAs (28S, 18S and 5,8S)
(4) Transcription of tRNA, 5 srRNA and sn RNA

Sol. (4)
NCERT (XII) Page No. 111
130. What is the function of tassels in the corn cob?
(1) To disperse pollen grains
(2) To protect seeds
(3) To attract insects
(4) To trap pollen grains

Sol. (4)
NCERT (XII) Page No. 29
131. In gene gun method used to introduce alien DNA into host cells, microparticles of \qquad metal are used.
(1)Tungsten or gold
(2) Silver
(3) Copper
(4) Zinc

Sol. (1)
NCERT (XII) Page No. 201
132. Cellulose does not form blue colour with Iodine because
(1) It does not contain comoplex helices and hence cannot hold iodine molecules.
(2) It breakes down when iodine reacts with it,
(3) It is a disaccharide.
(4) It is a helical molecule.

Sol. (1)
NCERT (XI) Page No. 148
133. Which of the following stages of meiosis involves division of centromere?
(1) Anaphase II
(2) Telophase
(3) Metaphase I
(4) Metaphase II

Sol. (1)
NCERT (XI) Page No. 169
134. The reaction centre in PS II has an absorption maxima at
(1) 660 nm
(2) 780 nm
(3) 680 nm
(4) 700 nm

Sol. (3)
NCERT (XI) Page No. 211
135. The historic Convention on Biological Diversity, 'The Earth Summit' was held in Rio de Janeiro in the year:
(1) 1986
(2) 2002
(3) 1985
(4) 1992

Sol. (4)
NCERT (XII) Page No. 267

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

Section - B (Biology : Botany)

136. Match List I with List II :

List I

A. M Phase
B. G_{2} Phase
C. Quiescent stage
D. G_{1} Phase

List II

I. Proteins are synthesized
II. Inactive phase
III. Interval between mitosis and initiation of DNA replication
IV. Equational division

Choose the correct answer from the options given below :
(1) A-IV, B-I, C-II, D-III
(2) A-II, B-IV, C-I, D-III
(3) A-III, B-II, C-IV, D-I
(4) A-IV, B-II, C-I, D-III

Sol. (1)
NCERT (XI) Page No. 163-164
137. Given below are tow statements:

Statement I : Gause's 'Competitive Exclusion Principle'states that two closely related species competing for the same resources cannot co-exist indefinitely and competitively inferior one will be eliminated eventually
Statement II : In general, carnivores are more adversely affected by competition than herbivores
In the light of the above statements, choose the correct answer form the options given below :
(1) Statement I is correct but Statement II is false.
(2) Statement I is incorrect but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (1)
NCERT (XII) Page No. 235
138. How many different proteins does the ribosome consist of?
(1) 40
(2) 20
(3) 80
(4) 60

Sol. (3)
NCERT (XII) Page No. 115
139. Match List I with List II :

List I

A. Oxidative decarboxylation
B. Glycolysis
C. Oxidative phosphorylation
D. Tricarboxylic acid cycle

List II

I. Citrate synthase
II. Pyruvate dehydrogenase
III. Electron transport system
IV. EMP Pathway

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

Choose the correct answer from the options given below :
(1) A-III, B-I, C-II, D-IV
(2) A-II, B-IV, C-III, D-I
(3) A-III, B-IV, C-II, D-I
(4) A-II, B-IV, C-I, D-III

Sol. (2)
NCERT (XI) Page No. 228-231-232
140. Which of the following statements are correct abour Klinefelter's Syndrome?
A. This disorder was first described by Langdon Down (1866).
B. Such an individual has overall masculine development. However, the feminine development is also expressed.
C. The affected individual is short statured
D. Physical, psychomotor and mental development is retarded.
E. Such individuals are sterile.

Choose the Correct answer form the options given below :
(1) B and E only
(2) A and E only
(3) A and B only
(4) C and D only

Sol. (1)
NCERT (XII) Page No. 92
141 Melonate inhibits the growth of pathogenic baeteria by inhibiting the activity of
(1) Lipase
(2) Dinitrogenase
(3) Succinic dehydrogenase
(4) Amylase

Sol. (3)
NCERT (XI) Page No. 158
142. Which of the following combinations is required for chemiosmosis?
(1) Proton pump, electron gradient, ATP synthase
(2) proton pump, electron gradient, NADP synthase
(3) membrane, proton, pump, proton gradient, ATP synthase
(4) proton graduent, NADP synthase

Sol. (3)
NCERT (XI) Page No. 233-234
143. Match List I with List II :

List I

A. Cohesion
B. Adhesion
C. Surface tension
D. Guttation

List II

I. More attraction in liquid phase
II. Mutual attraction among water molecules
III. Water loss in liquid phase
IV. Attraction toward's polar surfaces

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

Choose the correct answer from the options given below :
(1) A-III. B-I, C-IV, D-II
(2) A-II, B-I, C-IV, D-III
(3) A-II, B-IV, C-I, D-III
(4) A-IV, B-III, C-II, D-I

Sol. (3)
NCERT (XI) Page No. 188
144. Match List I with List II :

List I

A. Iron
B. Zinc
C. Boron
D. Molybdenum

List II

I. Synthesis of auxin
II. Component of nitrate reductase
III. Activator of catalase
IV. Cell elongation and differentiation

Choose the correct answer from the options given below :
(1) A-III. B-I, C-IV, D-II
(2) A-II, B-IV, C-I, D-III
(3) A-III, B-II, C-I, D-IV
(4) A-II, B-III, C-IV, D-I

Sol. (1)
NCERT (XI) Page No. 197-198
145. Main steps in the formation of Recombinant DNA are given below. Arrange these steps in a correct sequence.
A. Insertion of recombinant DNA into the host cell.
B. Cutting of DNA at specific location by restriction enzyme
C. Isolation of desired DNA fragment.
D. Amplification of gene of interest using PCR.

Choose the correct answer from the options given below :
(1) $\mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{A}$
(2) B,D,A,C
(3) B,C,D,A
(D) $\mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{D}$

Sol. (3)
NCERT (XII) Page No. 201-203
146. Match List I with List II :

List I
 (Interaction)

A. Mutualism
B. Commensalism
C. Amensalism
D. Parasitism

List II

(Species A and B)
I. + (A), $\mathrm{O}(\mathrm{B})$
II. -(A), O(B)
III. +(A), -(B)
IV. $+(\mathrm{A}),+(\mathrm{B})$

Choose the correct answer from the options given below :
(1) A-IV. B-III, C-I, D-II
(2) A-III, B-I, C-IV, D-II
(3) A-IV, B-II, C-I, D-III
(4) A-IV, B-I, C-II, D-III

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com

Sol. (4)
NCERT (XII) Page No. 232
147. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: A flower is defined as modified shoot wherein the shoot aplcal meristem changes to floral meristem.
Reason R : Internode of the shoot gets condensed to produce different floral appendages laterally at successive nodes instead of leaves.
In the light of the above statements, choose the correct answer from the options given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true.
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(4) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (3)
NCERT (XI) Page No. 71
148. Which one of the following statements is NOT correct:
(1) Water hyacinth grows abundantly in eutrophoc water bodies and leads to an imbalance in the ecosystem dynamics of the water body.
(2) The amount of some toxic substances of industrial waste water increases in the organisms at successive trophic levels.
(3) The micro-organisms involved in biodegradation of organic matter in a sewage polluted water body consume a lot of oxygen casuing the death of aquatic organisms.
(4) Algal blooms caused by excess of organic matter in water improve water quality and promote fisheries.

Sol. (4)
NCERT (XII) Page No. 275-276
149. Identify the correct statements :
A. Lenticels are the lens-shaped openings permitting the exchange of gases.
B. Bark formed early in the season is called harrd bark.
C. Bark is a technical term that refers of all tissues exterior to vascular cambium.
D. Bark refers to periderm and secondary phloem.
E. Phellogen is single-layered in thickenss

Choose the correct answer from the options given below :
(1) A, B and D only
(2) B and C only
(3) B, C and E only
(4) A and D only

Sol. (4)

NCERT (XI) Page No. 96-97

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
150. Given below are two statements : One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: In gymnosperms the pollen grains are release from the microsporangium and carried by air currents

Reason R : Air currents carry the poller grains to the mouth of the archegonia when the male gametes are discharged and poller tube is not formed.

In the light of the above statements. choose the correct answer from the options given below :
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true.
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}

Sol. (1)
NCERT (XI) Page No. 39

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

Section-A (ZOOLOGY)

151. Match List I with List II.

List I

A. Heroin
B. Marijuana
C. Cocaine
D. Morphine

List II

I. Effect on cardiovascular system
II. Slow down body function
III. Painkiller
IV. Interfere with transport of dopamine

Choose the correct answer from the options given below :
(1) A-IV, B-III, C-II, D-I
(2) A-III, B-IV, C-I, D-II
(3) A-II, B-I, C-IV, D-III
(4) A-I, B-II, C-III, D-IV

Sol. (3)
NCERT (XII) Page no. 158-159
152. Given below are two statements:

Statement I: RNA mutates at a faster rate.
Statement II: Viruses having RNA genome and shorter life span mutate and evolve faster.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statements I is true but statement II is false.
(2) Statements I false but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (3)
NCERT (XII) Page No. 103
153. Given below are two statements:

Statement I : Vas deferns receives a duct from seminal vesicle and opens into urethra as the ejaculatory duct.
Statement II : The cavity of the cervix is called cervical canal which along with vagina forms birth canal.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is correct but Statement II is false.
(2) Statement I incorrect but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (3)
NCERT (XII) Page No. 46

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
154. Which of the following funcitions is carried out by cytoskeleton in a cell?
(1) Motility
(2) Transportation
(3) Nuclear division
(4) Protein synthesis

Sol. (1)
NCERT (XI) Page No. 136
155. Which of the following statements are correct regarding female reproductive cycle?
A. In non-primate mammals cyclical changs during reproduction are called oestrus cycle.
B. First menstrual cycle begins at puberty and is called menopause
C. Lack of menstruation many be indicative of preganacy.
D. Cyclic menstruation extends between menarche and menopause.

Choose the most apporpriate answer from the options given below:
(1) A, B and C only
(2) A, C and D only
(3) A and D only
(4) A and B only

Sol. (2)
NCERT (XII) Page No. 49-59
156. Match List I with List II.

List I

A. Vasectomy
B. Coitus interruptus
C. Cervical caps
D. Saheli

List II

I. Oral method
II. Barrier method
III. Surgical method
IV. Natural method

Choose the correct answer from the options given below:
(1) A-II, B-III, C-I, D-IV
(2) A-IV, B-II, C-I, D-III
(3) A-III, B-I, C-IV, D-II
(4) A-III, B-IV, C-II, D-I

Sol. (4)
NCERT (XII) Page No. 60-61
157. Which one of the following symbols represents mating between relatives in human pedigree analysis?
(1)

(2)
\square
(3)

(4)

Sol. (4)
NCERT (XII) Page No. 88
158. Which of the following are NOT considered as the part of endomembrane system?
A. Mitochondria
B. Endoplasmic
C. chloroplasts
D. Golgi complex
E. Peroxisomes

Choose the most appropriate answer from the options given below:
(1) A and D only
(2) A, D and E only
(3) B and D only
(4) A, C and E only

Sol. (4)
NCERT (XI) Page No. 133

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
159. Match List I with List II with respect to human eye.

List I

A. Fovea
B. Iris
C. Blind spot
D. Sclera

List II

I. Visible coloured portion of eye that regujates diameter of pupil.
II. External layer of eye formed of dense connective vetissue.
III. Point of great visual acuity or resolution.
IV. Point where optic nerve leaves the eyeball and photoreceptor cells are absent.

Choose the correct answer from the options given below:
(1) A-I, B-IV, C-III, D-II
(2) A-II, B-I, C-III, D-IV
(3) A-III, B-I, C-IV, D-II
(4) A-IV, B-III, C-II, D-I

Sol. (3)
NCERT (XI) Page No. 323-324
160. Match List I with List II

List I

A. P-wave
B. Q-wave
C. QRS complex
D. T-wave

List II

I. Beginning of systole
II. Repolarisation of ventricles
III. Depolarisation of atria
IV. Depolarisation of ventricles

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-I, D-III
(2) A-I, B-II, C-III, D-IV
(3) A-III, B-I, C-IV, D-II
(4) A-IV, B-III, C-III, D-I

Sol. (3)
NCERT (XI) Page No. 286
161. Match List I with List II.

List I

A. CCK
B. GIP
I. Kidney
C. ANF
D. ADH

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-I, D-III
(2) A-IV, B-II, C-III, D-I
(3) A-IV, B-III, C-II, D-I
(4) A-III, B-II, C-IV, D-I

Sol. (3)
NCERT (XI) Page No. 333,337,338
162. Match List I with List II.

List I

A. Gene ' a '
B. Gene ' y '
C. Gene ' i '
D. Gene ' z '

List II

I. β-galactosidase
II. Transacetylase
III. Permease
IV. Repressor protein

Choose the correct answer from the optiions given below :
(1) A-III, B-IV, C-I, D-II
(2) A-III, B-I, C-IV, D-II
(3) A-II, B-I, C-IV, D-III
(4) A-II, B-III, C-IV, D-I

Sol. (4)
NCERT (XII) Page No. 117
163. Vital capacity of lung is \qquad .
(1) $I R V+E R V+T V-R V$
(2) $I R V+E R V+T V$
(3) IRV + ERV
(4) $I R V+E R V+T V+R V$

Sol. (2)
NCERT (XI) Page No. 272
164. Select is correct group/set of Australius Marsupials exhibiting adaptive radiation.
(1) Mole, Flying squirrel, Tasmanian tiger cat
(2) Lemur, Anteater, Wolf
(3) Tasmanian wolf, Bobcat, Marsupial mole
(4) Numbat, Spotted cuscus, Flying phalanger

Sol. (4)
NCERT (XII) Page No. 113
165. Match List I with List II.

List I

A. Ringworm
B. Filariasis
C. Malaria
D. Pneumoria

List II

I. Haemophilus influenzae
II. Trichophyton
III. Wuchereria bancrofti
IV. Plasmodium vivax

Choose the correct answer from the options given below:
(1) A-III, B-II, C-I, D-IV
(2) A-III, B-II, C-IV, D-I
(3) A-II, B-III, C-IV, D-I
(4) A-II, B-III, C-I, D-IV

Sol. (3)
NCERT (XII) Page No. 147-149

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
166. Match List I with List II .

List I

(Type of Joint)

A. Cartilaginous Joint
B. Ball and Socket Joint
C. Fibrous Joint
D. Saddle Joint

List II

(Found between)
I. Between flat skull bones
II. Between adjacent vertebrae in vertebral column
III. Between carpal and metacarpal of thumb
IV. Betwen Humerus and Pectoral girdle

Choose the correct answer from the options given below:
(1) A-I, B-IV, C-III, D-II
(2) A-II, B-IV, C-III, D-I
(3) A-III, B-I, C-II, D-IV
(4) A-II, B-IV, C-I, D-III

Sol. (4)
NCERT (XI) Page No. 312
167. Given below are statements : one is labelled as Assertion \mathbf{A} and the other is labelled as Reason R.

Assertion A: Nephrons are of two types: Cortical \& Juxta medullary. based on their relative position in cortex and medullal.
Reason R: Juxta medullary nephrons have short loop of Henle whereas, cortical nephrons have longer loop of Henle.
In the light of the above statements, choose the correct answer from the options given below:
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true.
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (1)
NCERT (XI) Page No. 293
168. Which one of the following techniques does not serve the purpose of early diagnosis of a disecase for its early treatment?
(1) Polymerase Chain Reaction (PCR) technique
(2) Enzyme Linked Immuno-Sorbent Assary (ELISA) technique
(3) Recombinant DNA Technology
(4) Serum and Urine analysis

Sol. (4)
NCERT (XII) Page No. 212
169. Which one of the following common sexually transmitted diseases is completely curable when detected early and treated properly?
(1) Hepatitis-B
(2) HIV Infection
(3) Genital herpes
(4) Gonorrhoea

Sol. (4)
NCERT (XII) Page No. 63

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR : KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
HELPLINE NUMBER : 9608403030 / 31 / 32 / 40
170. Given below are two statements:

Statement I: Electrostatic percipitator is most widely used in thermal power plant.
Statement II: Electrostatic percipitator in thermal power plant removes ionising radiations
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I: is correct but Statement I: incorrect.
(2) Statement I incorrect but Statement II are correct.
(3) Both Statement I and Statement II are correct.
(4) Both Statement I and Statement II are incorrect.

Sol. (1)
NCERT (XII) Page No. 271
171. Which of the following is not a cloning vector?
(1) pBR322
(2) Probe
(3) BAC
(4) YAC

Sol. (2)
NCERT (XII) Page No. 199,119
172. Radial symmetry is NOT found in adults of phylum \qquad .
(1) Coelenterata
(2) Echinodermata
(3) Ctenophora
(4) Hemichordata

Sol. (4)
NCERT (XI) Page No. 47
173. Match List I with List II

List I

(Cells)
A. Peptic cells
B. Goblet cells
C. Oxyntic cells
D. Hepatic cells

List II

(Secretion)
I. Mucus
II. Bile juice
III. Proenzyme pepsinogen
IV. HCl and intrinsic factor for absorption of vitamin B_{12}

Choose the correct anwer from the options given below:
(1) A-III, B-I, C-IV, D-II
(2) A-II, B-IV, C-I, D-III
(3) A-IV, B-III, C-II, D-I
(4) A-II, B-I, C-III, D-IV

Sol. (1)
NCERT (XI) Page No. 262
174. Once the undigested and unabsorbed substances enter the caecum, their backflow is prevented by-
(1) Gastro - oesophageal sphincter
(2) Pyloric sphincter
(3) Sphincter of Oddi
(4) Ileo-caecal valve

Sol. (4)
NCERT (XI) Page No. 264

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website: www.eduriseindia.com
175. Given below are two statements:

Statement I: In prokaryotes, the positively charged DNA is held with some negatively charged proteins in a region called nucleoid.

Statement II: In enukaryotes, the negatively charged DNA is wrapped around the positively charged histone octamer to form nucleosome.

In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is correct but Statement II is false.
(2) Statement I incorrect but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (2)
NCERT (XII) Page No. 99
176. Given below are two statements:

Statement I : Ligaments are dense irregular tissue.
Statement II: Cartilage is dense regular tissue.
In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is true but Statement II is false.
(2) Statement I is false but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (4)
NCERT (XI) Page No. 103, 104
177. Given below are two statements:

Statement I : Low temperature preserves the enzyme in a temporatily inactive state whereas high temprature destroys enzymatic activity because proteins are denatured by heat.

Statement II: When the inhibitor closely resembles the substrate in its molecular structure and inhibits the activity of the enzyme, it is known as competitive inhibitor. In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is true but Statement II is false.
(2) Statement I is false but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (3)
NCERT (XI) Page No. 157

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
178. Which of the following statement is correct
(1) Pressnce of large amount fo nutrients in water restricts 'Algal Bloom’
(2) Algal Bloom dereases fish mortality
(3) Eutrophication refers to increase in domestic sewage and waste water in lakes.
(4) Biomagnification refers to increase in concentration of the toxicant at successive trophic levels.

Sol. (4)
NCERT (XII) Page No. 275,276
179. Given below are two statements:

Statement I: A protein is imagined as a line, the left end represented by first amino acid (C-terminal) and the right end represented by last amino acid (N -terminal)
Statement II: Adult human haemoglobin, consists of 4 subnits (two subunits of α type and two subunits of β type.)

In the light of the above statements, choose the correct answer from the options given below:
(1) Statement Iis true but Statement II is false.
(2) Statement I is false but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.

Sol. (2)
NCERT (XI) Page No. 149,151
180. In which blood corpuscles, the HIV undergoes replication and produces progeny viruses?
(1) Basophils
(2) Eosinophils
(3) T_{H} cells
(4) B-lymphocytes

Sol. (3)
NCERT (XII) Page No. 156
181. Given below are two statements: one is labelled as Assertion \mathbf{A} and the other is labelled as Reason R.

Assertion A: Endometrium is necessary for implantation of blastocyst.
Reason R: In the absence of fertilization, the corpus luteum degenerates that causes disintegration of endometrium. In the light of the above statements, choose the correct answer from the options given below:
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true.
(3) Both \mathbf{A} and \mathbf{R} are ture and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (4)
NCERT (XII) Page No. 51-53

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
182. Match List I with List II.

List I

A. Taenia
B. Paramoecium
C. Periplaneta
D. Pheretima

List II

I Nephridia
II. Contractile vecuole
III. Flame cells
IV. Urecose gland

Choose the correct answer from the options given below:
(1) A-III, B-II, C-IV, D-I
(2) A-II, B-I, C-IV, D-III
(3) A-I, B-II, C-III, D-IV
(4) A-I, B-II, C-IV, D-III

Sol. (1)
NCERT (XI) Page No. 134,114,291
183. Match List I with List II

List I

(interacting species)
A. A Leopard and a Lion in a forest/grasslad
B. A Cuckoo laying egg in a Crow's nest
C. Fungi and root of a higher plant in Mycorrtizae
D. A cattle egret and a Cattle in a field

List II

(Name of Interaction)
I. Competition
II. Brood parasitism
III. Mutualism
IV. Commensalism

Choose the correct answer from the optiions given below:
(1) A-III, B-IV, C-I, D-II
(2) A-II, B-III, C-I, D-IV
(3) A-I, B-II, C-III, D-IV
(4) A-I, B-II, C-IV, D-III

Sol. (3)
NCERT (XII) Page No. 236-237
184. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Aessertion A: Amniocentesis for sex detemination is one of the strategies of Reproductive and Child Health Care Programme.
Reason R: Ban on amniocentesis checks increasing menace of female foeticide.
In the light of the above statements, choose the correct answer from the options given below:
(1) \mathbf{A} is true but \mathbf{R} is false.
(2) \mathbf{A} is false but \mathbf{R} is true.
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is NOT the correct explanation of \mathbf{A}.

Sol. (2)
NCERT (XII) Page No. 158

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
185. Broad palm with single palm crease is visible in a person suffering from-
(1) Klinefelter's syndrome
(2) Thalassemia
(3) Down's syndrome
(4) Turner's syndrome

Sol. (3)
NCERT (XII) Page No. 91

Section - B (Biology : Zoology)

186. Select the correct statements with reference to chordates.
A. Presence of a mid-dorsal, solid and double nerve cord.
B. Presence of closed circulatroy system.
C. Presence of paired pharygeal gillslits.
D. Presence of dorsal heart
E. Triploblastic pseudocoelomate animals.

Choose the correct answer from the options given below:
(1) B, D and E only
(2) C, D and E only
(3) A, C and D only
(4) B and C only

Sol. (4)
NCERT (XI) Page No. 55
187. Which one of the following is the sequence on corresponding coding strand, if the sequence on mRNA formed is as follows

5’AUCGAUCGUCGAUCGAUCGAUCGAUCG3’?

(1) 5'ATCGATCGATCGATCGATCGATCGATCG3'
(2) 3'ATCGATCGATCGATCGATCGATCGATCG 5’
(3) 5' UAGCUAGCUAGCUAGCUAGCUAGC UAGC 3'
(4) 3 ' UAGCUAGCUAGCUAGCUAGCUAGC 5’

Sol. (1)
NCERT (XII) Page No. 108
188. The parts of human brain that helps in regulation of sexual behaviour, expression of excitement, pleasure, rage, fear etc. are:
(1) Brain stem \& epithalamus
(2) Corpus callosum and thalamus
(3) Limbic system \& hypothalamus
(4) Corpora quadrigemina \& hippocampus

Sol. (3)
NCERT (XI) Page No. 321

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
189. Which of the following statements are correct?
A. An excessive loss of body fluid from the body switches off osmoreceptors.
B. ADH facilitates water reabsorption to prevent diuresis.
C. ANF causes vasodilation.
D. ADH causes increase in blood pressure.
E. ADH is responsible for decrease in GFR.

Choose the correct answer from the options given below:
(1) A, B and E only
(2) C, D and E only
(3) A and B only
(4) B C and D only

Sol. (4)
NCERT (XI) Page No. 297
190. Which of the following statements are correct?
A. Basophils are most abundant cells of the total $W B C_{S}$
B. Basophils secrete histamine, serotonin and heparin
C. Basophils are involved in inflammatory response
D. Basophils have kidney shaped nucleus
E. Basophils are agranulocytes

Choose the correct answer from the options given below:
(1) B and C only
(2) A and B only
(3) D and E only
(4) C and E only

Sol. (1)
NCERT (XI) Page No. 279
191. Which of the following are NOT under the control of thyroid hormone?
A. Maintenance of water and electrolyte balance
B. Regulation of basal metabolic rate
C. Normal rhythm of sleep-wake cycle
D. Development of immune system
E. Support the process of R.B.Cs formation

Choose the correct answer from the options given below:
(1) C and D only
(2) D and E only
(3) A and D only
(4) B and C only

Sol. (1)
NCERT (XI) Page No. 334
192. Which of the following is characteristic feature of cockroach regarding sexual dimorphism?
(1) Presence of sclerites
(2) Presence of anal cerci
(3) Dark brown body colour and anal cerci
(4) Presence of anal styles

Sol. (4)
NCERT (XI) Page No. 112

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
193. Which one of the following is NOT an advantage of inbreeding?
(1) Elimination of less desirable genes and accumulation of superior genes takes place due to it.
(2) It decrease the productivity of inbred population, after continuous inbreeding.
(3) It decreases homozygosity.
(4) It exposes harmful recessive genes that are eliminated by selection.

Sol. (2)
NCERT (XII) Page No. 167
194. The unique mammalian characteristics are :
(1) hairs, pinna and indirect development
(2) pinna, monocondylic skull and mammary glands
(3) hairs, tympanic membrane and mammary glands
(4) hairs, pinna and mammary glands

Sol. (4)
NCERT (XI) Page No. 59-60
195. Select the correct statements.
A. Tetrad formation is seen during Leptotene.
B. During Anaphase, the centromeres split and chromatids separate.
C. Terminalization takes place during pachytene.
D. Nucleolus, Golgi complex and ER are reformed during Telophase.
E. Crossing over takes place between sister chromatids of homologous chromosome.

Choose the correct answer from the options given below:
(1) A, C and E only
(2) B and E only
(3) A and C only
(4) B and D only

Sol. (4)
NCERT (XI) Page No. 166, 168
196. Given below are two statements:

Statement I: During G_{0} phase of cell cycle, the cell is metabolically inactive.
Statement II: The centrosome undergoes deplication during S phase of interphase
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I is correct but Statement II is incorrect,
(2) Statement I is incorrect but Statement II is correct.
(3) Both Statement I and Statement II are correct
(4) Both Statement I and Statement II are incorrect

Sol. (2)
NCERT (XI) Page No. 163-164

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
197. Which of the following statements are correct regarding skeletal muscle?
A. Muscle Bundles are held together by collagenous connective tissue layer called fascicle.
B. Sarcoplasmic reticulum of muscle fibre is a store house of calcium ions.
C. Striated appearance of skeletal muscle fiber is due to distribution pattern of actin and myosin proteins.
D. M line is considere as functional unit of contraction called sarcomere.

Choose the most apprapriate answer from the options given below:
(1) A, C and D only
(2) C and D only
(3) A, B and C only
(4) B and C only

Sol. (4)
NCERT (XI) Page No. 304
198. Match List I with List II.

List I

A. Logistic growth
B. Exponential growth
II. Limited resource availability condition
C. Expanding age pyramid III. The percent individuals of pre-reproductive age is largest followed by reproductive and post reproductive age group
D. Stable age pyramed IV. The percent individuals of pre-reproductives and reproductive age group are same Choose the correct answer from the options given below :
(1) A-II, B-IV, C-I, D-III
(2) A-II, B-IV, C-III, D-I
(3) A-II, B-I, C-III, D-IV
(3) A-II, B-III, C-I, D-IV

Sol. (3)
NCERT (XII) Page No. 227,230, 231
199. Match List I with List II

List I

A. Mast cells
B. Inner surface of bronchiole
C. Blood
D. Tubular parts of nephron

List II

I. Ciliated epithelium
II. Areolar connective tissue
III. Cuboidal epithelium
IV. specialised connective tissue

Choose the correct answer from the options given below :
(1) A-II, B-I, C-IV, D-III
(2) A-III, B-IV, C-II, D-I
(3) A-I, B-II, C-IV, D-III
(3) A-II, B-III, C-I, D-IV

Sol. (1)
NCERT (XI) Page No. 101, 103

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna
200. In cockroach, excretion is brought about by
A. Phallic gland
B. Urecose gland
C. Nephrocytes
D. Fat body

Choose the correct answer from the options given below :
(1) B, C and D only
(2) B and D only
(3) A and E only
(4) A, B and E only

Sol. (1)
NCERT (XI) Page No. 114

KANKARBAGH : Sachiwalaya Colony, Patna
BORING ROAD : Pushpanjali Place, Opp. Alankar Place
BAILEY ROAD : H.B. Complex, Gola Road Crossing, Patna

DELHI-NCR: KP-3, G. Noida | PUNE : Ganga Acropolis, Baner website : www.eduriseindia.com

